296 research outputs found

    Gene × Gene interaction between MnSOD and GPX-1 and breast cancer risk: a nested case-control study

    Get PDF
    BACKGROUND: Germ-line mutations in genes such as BRCA1, BRCA2, and ATM can cause a substantial increase in risk of breast cancer. However, these mutations are rare in the general population, and account for little of the incidence of sporadic breast cancer in the general population. Therefore, research has been focused on examining associations between common polymorphisms and breast cancer risk. To date, few associations have been described. This has led to the hypothesis that breast cancer is a complex disease, whereby a constellation of very low penetrance alleles need to be carried to present a risk phenotype. Polymorphisms in the manganese superoxide dismutase (MnSOD) and glutathione peroxidase (GPX-1) genes have been proposed as low penetrance alleles, and have not been clearly associated with breast cancer. We investigated whether variants at both polymorphisms, while not independently associated with breast cancer risk, could influence breast cancer risk when considered together. METHODS: A case-control study nested within the Nurses' Health Study was performed comparing 1262 women diagnosed with breast cancer to 1533 disease free women. The MnSOD (Val16Ala, rs1799725) and GPX-1 (Pro198Leu, rs1050450) were genotyped via TaqMan assay. Disease risk was evaluated using logistic regression. RESULTS: While neither allele alone shows any change in breast cancer risk, an increase in the risk of breast cancer (OR 1.87, 95% CI 1.09 – 3.19) is observed in individuals who carry both the Ala16Ala genotype of MnSOD and the Leu198Leu genotype of GPX-1. CONCLUSION: Polymorphisms in the GPX-1 and MnSOD genes are associated with an increased risk of breast cancer

    Very low prevalence of epidermal growth factor receptor (EGFR) protein expression and gene amplification in Saudi breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancers which demonstrate EGFR protein expression, gene amplification and/or gene mutations may benefit therapeutically from tyrosine kinase inhibitors. In Western studies, EGFR protein expression has been demonstrated in 7-36% of breast cancer patients, while gene amplification has been found in around 6% of cases and mutations were either absent or extremely rare. Studies addressing EGFR protein expression and gene amplification in Saudi breast cancer patients are extremely scanty and the results reported have been mostly non-conclusive. Herein we report the prevalence of EGFR protein expression and gene amplification in a cohort of Saudi breast cancer patients.</p> <p>Findings</p> <p>We noticed a remarkably low incidence of EGFR protein expression (1.3%) while analyzing the spectrum of molecular subtypes of breast cancer in a Saudi population by immunohistochemistry. Also, <it>EGFR </it>gene amplification could not be demonstrated in any of 231 cases studied using silver enhanced <it>in situ </it>hybridization.</p> <p>Conclusions</p> <p>The extremely low incidence of EGFR protein expression and gene amplification in Saudi breast cancer patients as compared to Western populations is most probably ethnically related as supported by our previous finding in the same cohort of a spectrum of molecular breast cancer types that is unique to the Saudi population and in stark contrast with Western and other regionally based studies. Further support to this view is provided by earlier studies from Saudi Arabia that have similarly shown variability in molecular breast cancer subtype distribution between Saudi and Caucasian populations as well as a predominance of the high-grade pathway in breast cancer development in Middle East women. More studies on EGFR in breast cancer are needed from different regions of Saudi Arabia before our assumption can be confirmed, however.</p

    Nondense mammographic area and risk of breast cancer

    Get PDF
    Introduction The mechanisms underlying the strong association between percentage dense area on a mammogram and the risk of breast cancer are unknown. We investigated separately the absolute dense area and the absolute nondense area on mammograms in relation to breast cancer risk. Methods We conducted a nested case-control study on prediagnostic mammographic density measurements and risk of breast cancer in the Nurses\u27 Health Study and the Nurses\u27 Health Study II. Premenopausal mammograms were available from 464 cases and 998 controls, and postmenopausal mammograms were available from 960 cases and 1,662 controls. We used a computer-assisted thresholding technique to measure mammographic density, and we used unconditional logistic regression to calculate OR and 95% CI data. Results Higher absolute dense area was associated with a greater risk of breast cancer among premenopausal women (ORtertile 3 vs 1 = 2.01, 95% CI = 1.45 to 2.77) and among postmenopausal women (ORquintile 5 vs 1 = 2.19, 95% CI = 1.65 to 2.89). However, increasing absolute nondense area was associated with a decreased risk of breast cancer among premenopausal women (ORtertile 3 vs 1 = 0.51, 95% CI = 0.36 to 0.72) and among postmenopausal women (ORquintile 5 vs 1 = 0.46, 95% CI = 0.34 to 0.62). These associations changed minimally when we included both absolute dense area and absolute nondense area in the same statistical model. As expected, the percentage dense area was the strongest risk factor for breast cancer in both groups. Conclusions Our results indicate that absolute dense area is independently and positively associated with breast cancer risk, whereas absolute nondense area is independently and inversely associated with breast cancer risk. Since adipose tissue is radiographically nondense, these results suggest that adipose breast tissue may have a protective role in breast carcinogenesis

    Artificial intelligence in cancer imaging: Clinical challenges and applications

    Get PDF
    Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care

    Sex steroids, growth factors and mammographic density: a cross-sectional study of UK postmenopausal Caucasian and Afro-Caribbean women

    Get PDF
    INTRODUCTION: Sex steroids, insulin-like growth factors (IGFs) and prolactin are breast cancer risk factors but whether their effects are mediated through mammographic density, one of the strongest risk factors for breast cancer, is unknown. If such a hormonal basis of mammographic density exists, hormones may underlie ethnic differences in both mammographic density and breast cancer incidence rates. METHODS: In a cross-sectional study of 270 postmenopausal Caucasian and Afro-Caribbean women attending a population-based breast screening service in London, UK, we investigated whether plasma biomarkers (oestradiol, oestrone, sex hormone binding globulin (SHBG), testosterone, prolactin, leptin, IGF-I, IGF-II and IGF binding protein 3 (IGFBP3)) were related to and explained ethnic differences in mammographic percent density, dense area and nondense area, measured in Cumulus using the threshold method. RESULTS: Mean levels of oestrogens, leptin and IGF-I:IGFBP3 were higher whereas SHBG and IGF-II:IGFBP3 were lower in Afro-Caribbean women compared with Caucasian women after adjustment for higher mean body mass index (BMI) in the former group (by 3.2 kg/m(2) (95% confidence interval (CI): 1.8, 4.5)). Age-adjusted percent density was lower in Afro-Caribbean compared with Caucasian women by 5.4% (absolute difference), but was attenuated to 2.5% (95% CI: -0.2, 5.1) upon BMI adjustment. Despite ethnic differences in biomarkers and in percent density, strong ethnic-age-adjusted inverse associations of oestradiol, leptin and testosterone with percent density were completely attenuated upon adjustment for BMI. There were no associations of IGF-I, IGF-II or IGFBP3 with percent density or dense area. We found weak evidence that a twofold increase in prolactin and oestrone levels were associated, respectively, with an increase (by 1.7% (95% CI: -0.3, 3.7)) and a decrease (by 2.0% (95% CI: 0, 4.1)) in density after adjustment for BMI. CONCLUSIONS: These findings suggest that sex hormone and IGF levels are not associated with BMI-adjusted percent mammographic density in cross-sectional analyses of postmenopausal women and thus do not explain ethnic differences in density. Mammographic density may still, however, be influenced by much higher premenopausal hormone levels

    Genetic variation in the estrogen metabolic pathway and mammographic density as an intermediate phenotype of breast cancer

    Get PDF
    Introduction: Several studies have examined the effect of genetic variants in genes involved in the estrogen metabolic pathway on mammographic density, but the number of loci studied and the sample sizes evaluated have been small and pathways have not been evaluated comprehensively. In this study, we evaluate the association between mammographic density and genetic variants of the estrogen metabolic pathway. Methods: A total of 239 SNPs in 34 estrogen metabolic genes were studied in 1,731 Swedish women who participated in a breast cancer case-control study, of which 891 were cases and 840 were controls. Film mammograms of the medio-lateral oblique view were digitalized and the software Cumulus was used for computer-assisted semi-automated thresholding of mammographic density. Generalized linear models controlling for possible confounders were used to evaluate the effects of SNPs on mammographic density. Results found to be nominally significant were examined in two independent populations. The admixture maximum likelihood-based global test was performed to evaluate the cumulative effect from multiple SNPs within the whole metabolic pathway and three subpathways for androgen synthesis, androgen-to-estrogen conversion and estrogen removal. Results: Genetic variants of genes involved in estrogen metabolism exhibited no appreciable effect on mammographic density. None of the nominally significant findings were validated. In addition, global analyses on the overall estrogen metabolic pathway and its subpathways did not yield statistically significant results. Conclusions: Overall, there is no conclusive evidence that genetic variants in genes involved in the estrogen metabolic pathway are associated with mammographic density in postmenopausal women

    Mammographic density and risk of breast cancer by age and tumor characteristics

    Get PDF
    Introduction: Understanding whether mammographic density (MD) is associated with all breast tumor subtypes and whether the strength of association varies by age is important for utilizing MD in risk models. Methods: Data were pooled from six studies including 3414 women with breast cancer and 7199 without who underwent screening mammography. Percent MD was assessed from digitized film-screen mammograms using a computer-assisted threshold technique. We used polytomous logistic regression to calculate breast cancer odds according to tumor type, histopathological characteristics, and receptor (estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor (HER2)) status by age (51%) versus average density (11-25%). Women ages 2.1 cm) versus small tumors and positive versus negative lymph node status (P’s < 0.01). For women ages <55 years, there was a stronger association of MD with ER-negative breast cancer than ER-positive tumors compared to women ages 55–64 and ≥65 years (Page-interaction = 0.04). MD was positively associated with both HER2-negative and HER2-positive tumors within each age group. Conclusion: MD is strongly associated with all breast cancer subtypes, but particularly tumors of large size and positive lymph nodes across all ages, and ER-negative status among women ages <55 years, suggesting high MD may play an important role in tumor aggressiveness, especially in younger women
    corecore